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Abstract
Food aromas generally are complex mixtures of volatiles. In the present study, we investigated the joint effects of hexyl acetate,
trans-2-hexenal and 1-hexanol on the multi-attribute perception of an apple aroma. The first two substances were identified
earlier as positive contributors to the apple aroma (high character impact), whereas the third component was identified as an
irrelevant or negative contributor (low character impact). Aroma quality was quantified using a set of eight graphic rating
scales. All three components had significant effects on the aroma profiles. These effects consist mainly of an effect of
each component on the attribute that described its individual character and an effect of all three components on ratings on
the main character attribute ‘apple’. As expected, the high impact components increased ‘apple’ ratings, whereas the low
character impact component decreased ‘apple’ ratings. Furthermore, intensity ratings on the attribute that corresponded with
the odour of the low impact component were suppressed by the presence of high impact components. These results indicate
that the contributions of odorants to the mixture’s aroma are not linear combinations of separate odour intensities, because
sensory interactions were observed. In addition, humans detect components in complex mixtures more accurately than studies
on identification performance have suggested. We conclude that for an adequate assessment of the effects of multiple mixture
components on changes in aroma perception, it is sufficient to employ multiple response scales measuring intensities of
attributes that are distinctive with respect to the expected qualitative changes. Results of this approach should be subjected to
multivariate methods of statistical analysis.

Introduction
Food aromas generally comprise extensive mixtures of
volatile constituents. A large number of these constituents
produce odours if presented alone at similar concentration
levels. Others, however, might not produce noticeable
odours at all. An important objective in aroma research is to
minimize the number of components in a modelled aroma
by selecting those volatile components that contribute most
to the original aroma. In general, this selection is made on
the basis of two sensory properties: the relative perceived
intensity of that component presented in isolation and the
extent to which its character resembles the quality of the
particular food aroma. Both higher perceived intensity and
higher typicality of a component’s odour quality result in a
higher character impact of the component on the mixture’s
aroma (Buttery and Ling, 1998).

Character impact components (CICs) are usually identi-
fied by sensory analysis of mixture constituents after de-
composing the mixture by gas chromatography (Dravnieks

and O’Donnell, 1971). The constituents are evaluated with
regard to their unmixed odour qualities and intensities. In
doing so, one disregards that the contribution of an odorant
to the mixture’s aroma depends not only on its sensory
characteristics when presented in isolation, but  also on
sensory interactions that occur when the odorant is per-
ceived in the presence of other components.

Perceptual mixture interactions

In olfaction, partial mutual masking of mixture compon-
ents is the most commonly observed interaction, even in
mixtures consisting of as few as two components (Cain,
1975; Laing and Willcox, 1987; Lawless, 1987; Laing et al.,
1994). If one knows a component’s psychophysical function,
which relates component concentration to its perceived
intensity, the intensity of a ‘mixture’ of that component
with itself can be predicted from the sum of the two
respective concentrations. However, the intensities of binary
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mixtures of two different supra-threshold components are
often lower than expected on the basis of their respective
psychophysical functions (Moskowitz and Barbe, 1977;
Berglund and Olsson, 1993a,b). On the other hand, indica-
tions of synergetic effects were observed when mixing sub-
threshold components (Guadagni et al., 1963; Laska and
Hudson, 1991).

The mutual perceptual suppression of odorant intensities
in multi-component mixtures is often observed (Moskowitz
and Barbe, 1977; Moskowitz, 1979). Cain hypothesized that
the masking power of supra-threshold odorants is positively
related to either the chemical or the perceptual complex-
ity of the masker (Cain, 1975). In the taste modality, the
masking power of two substances in concert was indeed
observed to be larger than the masking power of each of the
substances alone (Stevens and Traverzo, 1997). In the case of
olfaction, Laing and co-workers demonstrated that humans
perform increasingly worse with increasing numbers of
masking components when they are asked to identify odor-
ous constituents in mixtures (Laing and Francis, 1989; Laing
and Glemarec, 1992; Livermore and Laing, 1996; Jinks and
Laing, 1999). Even the seemingly easy task of identifying the
qualities of odorous constituents in binary mixtures yields
probabilities of correct detections far below perfection
(Olsson, 1994). A similar relationship between mixture
complexity and masking power was observed when  the
mixture components themselves were multicomponent mix-
tures, each mixture representing a familiar object odour
(Livermore and Laing, 1998).

Although humans experience great difficulties in recog-
nizing the contribution of single components to the aroma
of complex mixtures, they are able to discriminate between
complex mixtures of odorants that are identical except for
one component (Laska and Hudson, 1992). This can be
explained by assuming that some or all of the odorants in
a complex mixture blend perceptually into an intrinsically
new aroma (Livermore and Laing, 1998). The omission of
components from a complex mixture may then be detectable
as a change in aroma quality, but not as an omission as such.
Food aromas as well as many other object-related aromas
generally consist of complex mixtures of odorants that,
nonetheless, are perceived as homogeneous aroma blends. It
is, therefore, rather speculative to assume that omitting
components from a mixture would only affect the perceived
intensity of their respective characters in the aroma of the
mixture.

In recent years, scholars at the Deutsche Forschungsan-
stalt für Lebensmittelchemie have recognized the relevance
of studying the contribution of CICs in the mixture. In a
number of studies they evaluated the impact of components
on mixture aroma by assessing the effect of omitting these
from the mixture (Blank et al., 1992; Guth and Grosch,
1994; Schieberle and Hofmann, 1997; Reiners and Grosch,
1998). In a study on the aroma of french fries (Wagner and
Grosch, 1998), the authors determined the components with

high ratios of mixture concentration versus detection
threshold concentration, called odour activity values
(OAVs). Omitting these supra-threshold components from a
model mixture often resulted in a significant discrimination
of the aromas of the reduced versus the complete mixture.
When reduced and complete mixtures were significantly
perceived as different, panellists characterized the aroma
qualities of  the mixtures by rating intensities of attributes
describing the odours of mixture components. In this study,
omitting the component with the second highest OAV from
the mixture was not detected in the discrimination task.
After subsequent omission of additional components,
however, a number of panellists gave higher ratings on the
attribute describing the component with the second highest
OAV. This post hoc evaluation suggests that this component
was perceived only after it had been released from suppres-
sion due to a number of masking components. Indications
for ‘release from suppression’ effects were also found in
similar studies on an Arabica coffee model (Czerny et al.,
1999) and a white wine model (Grosch, 2000).

Evaluating aroma differences

The effect of component concentration on aroma quality
can be quantified by measures of discriminability between
mixtures, by similarity ratings, or by ratings on attributes
describing the aromas. However, these methods vary with
respect to their sensitivity to differences in aroma quality
and their ability to characterize aroma quality.

If one  only wishes to test hypotheses with respect to
perceptual discriminability of stimuli, discrimination tasks
may suffice. Trials in discrimination tasks yield binary-
scaled results: a subject either does or does not distinguish
correctly between differing stimuli. Proportions of correct
stimulus discriminations can be calculated from repeated
stimulus comparisons and are tested against the expected
chance proportion of a correct discrimination. A psycho-
physical application of this method conceives the probability
of correctly detecting a difference between stimuli as a meas-
ure of the sensory difference between stimuli (Thurstone,
1927; Frijters, 1980). It expresses sensory difference as the
perceptual distance between stimuli on an arbitrary sensory
continuum. Such measures of perceptual distance have been
used to detect mixture interactions (Lawless and Schlegel,
1984).

Similarity ratings are used to measure the degree of sen-
sory similarity between stimuli using discrete or continuous
rating scales. Hence, the rated dissimilarity of stimuli can be
conceived of as a measure of the distance between stimulus
representations on an arbitrary sensory continuum. This
sensory continuum may either represent a quality con-
tinuum or an intensity continuum, depending on the nature
of the difference between stimuli.

Although discrimination tasks and similarity ratings
are sensitive in detecting differences in both intensity and
quality, they do not allow for semantic interpretations of
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results in terms of  odour quality characterizations. There-
fore, to study the qualitative nature of sensory interactions,
methods that directly address odour quality are needed.
Attribute ratings reflect perceived intensities of odour
characteristics indicated by odour quality descriptors. This
makes attribute ratings an adequate tool to study and
describe mixture interactions in both qualitative and
quantitative terms. However, when the descriptor set is not
distinctive with respect to the characteristic on which the
stimuli differ, attribute ratings may have less discriminative
power than similarity ratings (Callegari et al., 1997). This
may explain why Lawless and Schlegel (Lawless and
Schlegel, 1984) found a taste–odour interaction in mixtures
with variable sucrose and citral concentrations when using
sensory distances calculated from discrimination task
results, whereas no interaction was observed when attribute
ratings were used. Intensity ratings on the attributes ‘sweet-
ness’ and ‘lemon odour’ were merely statistically additive for
the used stimulus set. In a meta-analysis, Callegari et al.
showed that 25–30 distinctive descriptors are needed to
cover the perceptual space for olfaction alone. Therefore, in
the cross-modal study of Lawless and Schlegel, a set of two
descriptors may have lacked the discriminative power
needed to measure interactions. Dravnieks and colleagues
(Dravnieks et al., 1978) showed that over different panels,
similarity ratings were at least as consistent as measures
derived from attribute ratings. Summarizing, discrimination
tasks and similarity ratings may be more sensitive or reliable
methods to detect mixture interactions than attribute
ratings, especially if selected descriptors are not distinctive.
Nevertheless, the latter are to be preferred if the qualitative
nature of these interactions should be assessed, provided
that these are distinctive with respect to the characteristics
on which stimuli differ.

Where no perceptual blending occurs in a mixture of
odorants, we expect that the effect of changing a constitu-
ent’s concentration in that mixture is best reflected by ratings
on the component’s corresponding descriptor. Panellists can
generate these descriptors on presentation of  the unmixed
odorants, in which case these odorants can be used as
standards to train panellists on the use of descriptors. This
helps to align panellists’ conceptual representations of
attributes and, hence, may improve consistency of panel
responses (O’Mahony, 1991; Lesschaeve and Sulmont,
1996). A descriptor set so designed may include as many
descriptors as there are components in the mixture, which
will often be less than the number of 25–30 recommended
by Callegari et al. (Callegari et al., 1997). Although a small
selection of attributes covers merely a part of the olfactory
universe, we argue that it is still a sensitive tool for describing
the interactions in the mixture under investigation if com-
ponent-derived descriptors are used.

Statistical interaction versus sensory interaction

When systematically manipulating the presence of a number

of components in a mixture according to a factorial mixing
design, one faces the task of deriving sensory mixture
interactions from factorial plots of intensity measures. Note
that this is not identical to identifying statistical interactions
in the factorial plot. In general, statistical methods assume
linear models relating dependent variables to independent
variables. Psychophysical studies, however, have shown that
the relationship between stimulus concentration and its
perceived intensity rarely approaches linearity, but generally
yields negatively accelerating curves fitting power functions
with exponents ranging from 0.1 to 1.0 (Stevens, 1961; Cain,
1969; Baird et al., 1996). It can be shown that, due to the
non-linearity of psychophysical functions, factorial mixing
plots of two-component mixture intensities will generally
show converging lines, even when the ‘constituents’ are the
same substance (De Graaf and Frijters, 1988). This may
lead to a statistically significant interaction, while no
sensory interaction is present. Only in those rare cases where
the factorial mixing plot shows a set of diverging lines does
a statistical interaction effect support a sensory inter-
action: a case of extremely strong synergism (De Graaf and
Frijters, 1988; Schifferstein and Frijters, 1990; Schifferstein,
1995). In addition, sensory interactions are evident when a
component suppresses an aspect of the mixture’s aroma to
which the component does not itself contribute. This
will appear as a significant, negative statistical main effect
and/or interaction effect of the suppressing component
on intensity ratings. In the latter case, the suppressive effect
does not necessarily coincide with a significant statistical
interaction, although it does concern a sensory interaction.
In this paper we will first report the outcomes of statistical
tests and, subsequently, discuss these outcomes in terms of
their implications with respect to sensory interactions.

The present study

In the present study, we investigated whether and how sen-
sory interactions affect the perception of CICs in a complex
mixture of odorants that observers recognize as a natural
food aroma. To study the contribution of different CICs, we
omit CICs systematically from the mixture. If a compon-
ent’s odour does not blend into an aroma at all, its impact
can be measured using intensity ratings on its respective
quality descriptor. Suppression of this component’s intens-
ity by other components can be measured accordingly. If, at
the other extreme, all components contribute to one aroma
blend, the main character descriptor of the aroma can be
used to measure the impact of constituent components.
The omission of a CIC should then reduce intensity ratings
on the main character descriptor. In order to be able to
describe aromas with different degrees of blending, we used
a detailed aroma-profiling task involving both single
component descriptors and a main character descriptor.
If components contribute to the main  aroma character
and also remain individually distinguishable, effects on both
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the main character descriptor and on specific quality
descriptors will be observed.

Generally, food aromas are elicited by  odorous  com-
ponents of varying odour intensities. Intensity is likely to be
an important factor influencing the impact of an odorant on
the mixture’s aroma. In the present study, however, we
wished to study processes involving odour quality only.
To eliminate the effect of odour intensity, we matched the
intensities of the three unmixed components under investi-
gation before evaluating their effects in a multi-component
model solution. These three components were selected
according to their expected character impact: two compon-
ents rated high on the target quality and one component
rated low on this target quality.

Pilot study

Materials and methods

Subjects

Eighteen paid volunteers, five men and 13 women, served as
subjects. They were recruited from the local Wageningen
community and were selected on the basis of their ability to
generate and use refined odour attributes. In addition, they
showed high inter-subject coherency in the use of graphic
rating scales. This implied that subjects generated inter-
subject-correlating profiles when they rated various aroma
intensities. All subjects were experienced olfactory panellists
(Bult et al., 2001), but they were naïve with respect to the
objectives of the experiment. Their ages ranged from 19 to
51 (average 29 years). All were non-smokers and none had

any history of olfactory dysfunction. Subjects were in good
health during the experiments. All gave written informed
consent.

Stimuli

The aroma model that is used in this study was derived
from a headspace sample of fresh apple juice earlier at
this laboratory. Although the model consists of a limited
number of components, it was recognized and described as
apple by 13 out of 23 subjects upon presentation of the
olfactory stimulus and without any extra information being
given (Bult et al., 2001). As identification performance for
many common odours is ~50% (Cain, 1979), this model was
deemed appropriate for the present  study. Although we
expect that more authentic apple aromas can be made, the
aroma model in the present study may validly be assumed to
represent a recognizable food aroma.

An apple reference stimulus was prepared from 10
components. Its composition was largely identical to that of
the original apple mixture (Table 1). However, ethanol was
excluded from the original mixture because it was of  sub-
threshold concentration, even after substantially increasing
its concentration. Pre-testing revealed that the ethanol com-
ponent did not induce any consistent olfactory sensations.
Furthermore, the propyl propanoate concentration in the
mixture was raised by a factor of five to enable a more
accurate stimulus preparation, thus improving stimulus
reliability. Since this component still had a low intensity in
the given concentration, we assumed that this alteration did

Table 1 Substances used for the stimuli with their nominal purities and concentrations

Component Nominal
purity (%)

Attributes generated by the
sensory panel (translated)

Concentration
in water in
pilot study
(µl/l)

Base mixture
component
(base) or
additional
component
(add.)

Concentration
in water for
apple
reference
aroma in
pilot study
(µl/l)

Concentration
in water for
profiling
experiment
(µl/l)

1-Butanolc >99.5 sour, dairy 2000 base 15 30
2-Methyl-1-butyl acetatea >94 sour hard-boiled candyd–glue 120 base 7.5 15
Butyl acetatec >99 nail polish 400 base 12.5 25
Hexanalc >98 macaroone–hedge 25 base 12.5 25
Isobutyl acetatea >99 sweet–lacquer 200 base 0.75 1.5
Propyl acetateb >99 fruity–acetone 125 base 2.5 5
Propyl propanoatec >99 spicy–eggnog 200 base 2.5 5
1-Hexanolc >98 nuts–musty 300 add. 10 20/300f

Hexyl acetatea >99 pear–apple 15 add. 7.5 15
Trans-2-hexenalb >99 bittersweet–rum 80 add. 40 80

Obtained from aAldrich, bJanssen Chimica, cMerck.
dSour hard-boiled candy is a popular sweet in the Netherlands, where it is referred to as ‘zuurtjes’.
eA macaroon is a cookie that has bitter almonds as its major flavour.
f1-Hexanol was present in both 20 µl/l and 300 µl/l concentrations (see text).
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not have a significant impact on the character of the mixture
aroma.

In addition to the mixture, 10 one-component stimuli
were prepared from each of the 10 components in the apple
model mixture. To obtain equi-intense stimuli, the concen-
tration of  each singular solution as well as the concentra-
tions in the complete apple mixture were raised, so that
all intensities matched the sensory intensity of an 80 µl/l
solution of trans-2-hexenal. This was done in a preliminary
study employing four faculty members. The resulting
composition of the apple reference stimulus is given in the
sixth column of Table 1. The concentrations of the singular
solutions are given in the fourth column of Table 1. Mix-
tures and single-component dilutions were prepared using
distilled water. All stimuli were prepared at least 2 h and not
earlier than 26 h before presentation. Stimulus solutions
were stored in the dark at 4°C and were presented at ambient
temperature (21 ± 1°C).

Procedure

Stimuli were presented in 200 ml glass jars, closed by
low-odour plastic screw caps, which could be opened by one
simple twist. Each jar contained 10 ml of solution. To
prevent volatile components from migrating from the screw
caps to the headspace, these two phases were separated with
aluminium foil. The subjects had to open each stimulus jar
by unscrewing the cap, while keeping the jar just underneath
their noses. Responses were to be given after taking a few
short sniffs.

In the first session, the subjects generated odour attributes
individually for all 10 unmixed stimuli. In the second part
of this session, these attributes were discussed in a plenary
meeting of all subjects. Consensus on the use of attributes
was reached after plenary consultation in the second session.

At the start of the third session, the model mixture with
the apple aroma was presented as the reference stimulus for
‘apple’ aroma. Subsequently, the 10 singular component
solutions were presented. Of each solution, subjects rated
the intensity of its ‘apple’ character on 150 mm scales
printed on paper, labelled ‘no apple’ at the left end and ‘very
much apple’ at the right end. The two components that
scored highest and the one that scored lowest on ‘apple’ were
selected as, respectively, two CICs and one non-character
impact component (non-CIC). Note that the definition of
character impact used here is based on quality rather than
perceived intensity, since all stimuli were approximately
equally intense.

Statistical analysis

Ratings for all 10 stimuli were collected within subjects. To
compensate for idiosyncratic scale usage, attribute ratings
were normalized to obtain equal means and standard
deviations for each subject. For convenience, the complete
data set for the group of subjects was transformed linearly
in order to obtain a group score range from 0 to 100. This
resulted in an average ‘apple’ value of 39.1 (SD = 22.4) for

every subject, over 10 evaluated samples. Throughout the
paper we used SPSS, version 7.5.2 (1997; SPSS, Chicago, IL)
for data analyses and 0.05 as the level of significance.

Results

Averaged normalized ‘apple’ scores (±SE) are plotted for
each component in Figure 1. Analysis of variance revealed
a significant effect of ‘component’ on  ‘apple’ responses
[F(9,179) = 10.9, P < 0.01]. Subsequent post hoc testing,
using Duncan’s multiple range statistic, showed that the
10 ‘apple’ scores could be grouped in four clusters of not
significantly different means (Figure 1). From the cluster of
components rated  highest  on  ‘apple’, hexyl acetate and
trans-2-hexenal were selected as CICs, whereas 1-hexanol
was selected from the lowest ranking cluster as a non-CIC.

Main Experiment

Materials and methods

Subjects

Eighteen paid volunteers, five men and 13 women, served as
subjects for the main experiment. This group was identical
to the group described in the pilot study, except for one
female subject who was replaced by another female sub-
ject. The new subject met the criteria for admission to the
panel as described for the pilot study. Ages ranged from
19 to 51 years and the average age was 30 years.

Stimuli

Ten different stimulus mixtures were prepared from the 10
selected components by systematically adding combinations
of the two CICs and the non-CIC to a base solution of
seven components in distilled water. Concentrations of the

Figure 1 Normalized (0–100) apple ratings for 10 equi-intense com-
ponents, expressed as mean (±SE) transforms of 150 mm scale ratings.
Components are grouped in homogeneous groups according to the results
of Duncan’s multiple range test on ‘apple’ ratings. Identical letters indicate
homogeneous groups.
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base solution components and the additives are given in
the last column of Table 1. The three additives—trans-2-
hexenal, hexyl acetate and 1-hexanol—were added in sin-
gular, binary, or ternary combinations, thus resulting in
2 (presence of hexyl acetate = HYL) × 2 (presence of
1-hexanol = HOL) × 2 (presence of trans-2-hexenal = HAL)
= 8 mixtures (Table 2). To match the unmixed intensities of
hexyl acetate and trans-2-hexenal, the 1-hexanol component
concentration had been increased to 300 ml/l relative to its
original 20 ml/l concentration in the apple mixture. In
addition, two mixtures containing the original—lower—
concentrations of 1-hexanol were included in the stimulus
set. One mixture consisted of the base mixture with only the
low concentration 1-hexanol added (No. 9). The other also
contained the two CICs hexyl acetate and trans-2-hexenal
(No. 10, the original apple aroma).

Procedure

Subjects performed a descriptive analysis of the aromas of
the 10 different stimuli. The attributes that were generated
for the 10 unmixed substances were reduced to seven by
letting each subject select three attributes that they con-
sidered the least appropriate descriptors for the full apple
mixture. The attributes that were selected most frequently
were discarded. In addition, an ‘apple’ attribute was
included. Consequently, the eight attributes used in  the
descriptive analysis were: ‘sour hard-boiled candy–glue’;
‘macaroon–hedge’; ‘sweet–lacquer’; ‘fruity–acetone’; ‘nuts–
musty’; ‘pear–apple’; ‘bittersweet–rum’ and ‘apple’. The
attribute names are translations of the Dutch terms used.
Reference stimuli for the eight attributes (the apple mixture
plus the respective components at concentrations identical
to the pilot study) were presented prior to every experi-
mental session in order to refresh odour-attribute associ-
ations. The use of the attributes ‘apple’ and ‘pear–apple’
may seem confounding because of their similarity. Subjects,
however, perceived the respective qualities differently (see
also Figures 2 and 3) and they considered these attributes
the most appropriate for these aromas.

Stimulus preparation and presentation proceeded as
described in the pilot study. One session lasted 40–50 min.
Laboratory conditions conformed to the ISO 8589 standard

(International Organization for Standardization, 1987).
During a session, subjects were seated in separate booths.
The uniform stimulus jars were coded with randomly
generated three-digit codes and they were presented in
random order, each individual receiving a separate order.
Subjects were instructed to rate attribute intensities on eight
linear 150 mm graphic rating scales that were presented
on a laptop computer screen (Compaq Contura 80386 DX
25 MHz with monochrome display), using the left button of
a two-button computer mouse. Between two stimuli, they
waited for at least 1 min, which was computer-paced. After
completing two training series in the first session, subjects
completed nine experimental series of 10 stimuli each in
three separate sessions. Consequently, nine evaluations of
every distinct stimulus were recorded for every subject.

Statistical analysis

Data from the training sessions were discarded. Since no
significant systematic changes in responses over sessions
were observed, ratings were averaged over the nine repeated
experimental sessions. Thus, data analyses were performed
on averaged intensity scores on eight attribute variables for
10 different stimuli per subject.

Perceived aroma quality is reflected in the aroma profile.
This does not imply that specific alterations of single com-
ponent concentrations are reflected exclusively in attribute
ratings of their respective accompanying attributes. There-
fore, we initially tested for differences between complete
profiles due to stimulus composition by doubly multivariate
repeated measures analyses of variance—ANOVA (Stevens,
1996). These analyses permit simultaneous multivariate
analyses of results on a set of dependent variables according
to a repeated-measures design. The approach of initially
performing a multivariate analysis also guards against
spurious effects due to the increased overall significance
level that results from performing successive univariate tests.
Since the experiment had a fractional factorial design (10
categories from a 12 category full factorial design), the
analysis was split into two consecutive multivariate analyses.
First, CIC and non-CIC effects were tested in a 2 × 2 × 2,
HOL (not present versus high concentration) × HYL ×
HAL design. Subsequently, the influence of all three

Table 2 Composition of stimulus mixtures derived from an apple model mixture

Constituents Mixture composition (× = present)

1 2 3 4 5 6 7 8 9 10

Base mixture × × × × × × × × × ×
Trans-2-hexenal (80 p.p.m.) × × × × ×
Hexyl acetate (15 p.p.m.) × × × × ×
1-Hexanol (300 p.p.m.) × × × ×
1-Hexanol (20 p.p.m.) × ×

Mixture No. 1 constitutes the fully ‘stripped’ apple aroma, while mixture No. 10 represents the original apple aroma.
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1-hexanol concentrations (not present, low concentration,
high concentration) and the presence or the absence of both
trans-2-hexenal and hexyl acetate was tested in a 3 (HOL) ×
2 (HYLHAL) design.

Any effects in the multivariate space indicate that aroma
changes are perceived due to the addition or the omission of
the CICs and the non-CIC. However, they do not give in-
sight into the qualitative nature of the differences perceived.
Because results on single attribute ratings may elucidate this
in part, we proceeded with an analysis of single attribute
data by univariate repeated measures ANOVA, as a post hoc
test after significant multivariate effects are found. Multi-
variate F-values were calculated according to Pillai’s trace
criterion.

Results
The multivariate effects of CICs and the non-CIC on the
eight attribute ratings in the HOL × HYL × HAL analysis
were found significant for HOL [F(8,10) = 4.80, P = 0.012]
and HAL [F(8,10) = 13.12, P < 0.001], whereas HYL
[F(8,10) = 2.48, P = 0.090] failed to reach significance. A
significant multivariate HOL × HAL interaction was also
observed [F(8,10) = 4.73, P = 0.013]. No three-way inter-
action was found. The HOL3 × HYLHAL analysis of  all
three 1-hexanol levels yielded significant multivariate effects
for HOL3 [F(16,56) = 2.07, P = 0.023] and HYLHAL
[F(8,10) = 3.97, P = 0.023]. The HOL3 × HYLHAL inter-
action was also significant [F(16,56) = 2.16, P = 0.017].

Univariate repeated measures ANOVAs were performed
for the main and the two-way interaction effects that were
significant in the multivariate analyses. Effects were found
on four  out of eight dependent variables. All effects of
component presence on aroma that were found in the multi-
variate analysis had counterparts in one or several of these
univariate effects. These univariate effects, therefore, appear
to explain the multivariate effects. Hence, further discussion
of results will be restricted to the four dependent variables
that showed significant effects.

Table 3 shows the ANOVA results for the HOL × HYL ×
HAL design grouped for each separate dependent variable
and specified for separate sources of variance. Apple ratings,
that reflect character impact of the three components in the
mixture, show significant main effects of HOL, HAL and
HYL. No interactions were found with respect to ‘apple’
ratings.  In Figure  2A, the effects on aroma quality are
illustrated. As may be expected on the basis of the nature of
character impact components, addition of the CICs (HYL,
HAL) to the base mixture increased ‘apple’ ratings. The
addition of the non-CIC (HOL) decreased ‘apple’ ratings.

Most pronounced were the effects on the ‘nuts–musty’
ratings, which were significantly affected by all three com-
ponents. The ‘nuts–musty’ attribute describes the character
of the 1-hexanol component, which is reflected by signifi-
cant higher ‘nuts–musty’ ratings at high HOL levels (Table 3,
Figure 2B). Furthermore, a significant HOL × HAL inter-
action is found for ‘nuts–musty’ ratings. This interaction
appears to be responsible for the multivariate HOL × HAL
interaction found, since it is the only univariate interaction
effect. It can be attributed to a masking influence of HAL
on the ‘nuts–musty’ character introduced by HOL. The pres-
ence of trans-2-hexenal does not affect ‘nuts–musty’ ratings
when 1-hexanol is not  present.  If 1-hexanol  is present,
however, the addition of trans-2-hexenal to the mixture
suppresses the ‘nuts-musty’ character drastically (Figure
2B). Likewise, HYL, the other CIC, appears to exhibit a
masking effect on the ‘nuts–musty’ character. Although the
HOL × HYL interaction was not statistically significant,
HYL had a significant main effect (Table 3) on ‘nuts–musty’

Figure 2 Mean intensity ratings (±SE) for the attributes ‘apple’, ‘nuts–
musty’, ‘pear–apple’ and ‘bittersweet–rum’. Panels (A–D) show the ratings
for the base mixture with 1-hexanol—HOL (not present; present in high
concentration), trans-2-hexenal—HAL (not present; present) and hexyl
acetate—HYL (not present; present). Panels (E–H) show the ratings for the
base mixture with 1-hexanol (not present; low concentration; high
concentration) and a combination of trans-2-hexenal and hexyl acetate (not
present; present).
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ratings comprising a decrease in ‘nuts–musty’ ratings due to
HYL (Figure 2B).

HYL had a significant effect on its character descriptor
‘pear–apple’. As may be expected, this effect comprised an
increase of ‘pear–apple’ ratings after adding hexyl acetate to
the mixture. Furthermore, ‘pear–apple’ ratings decreased
significantly when 1-hexanol was added to the mixture
(Figure 2C).

Ratings on ‘bittersweet–rum’ also increased significantly
when its characteristic component, trans-2-hexenal, was
added to the mixture (Table 3, Figure 2D). No other effects
were found for this descriptor.

Table 4 shows the ANOVA results for the HOL3 ×
HYLHAL 3 × 2 design, grouped for each separate depend-
ent variable and specified for separate sources of variance.
The results are similar to those presented in Table 3. High
HOL levels suppress ‘apple’ and ‘pear–apple’ ratings and
increase ‘nuts–musty’ ratings (Figure 2E,G,F, respectively).
Ratings on ‘apple’ and ‘pear–apple’ increased when CICs
(HYLHAL) were added (Figure 2E,G, respectively). The
contribution of HOL3 to ‘nuts–musty’ is suppressed by
HYLHAL (Figure 2F).

Applying orthogonal simple contrasts on HOL3 levels
(none, low,  high), comparing the levels ‘none’ to ‘low’,
respectively ‘none’ to ‘high’, revealed significant effects for
‘high’ versus ‘none’ on ratings for ‘apple’ [F(1,17) = 14.48,
P = 0.001], ‘pear–apple’ [F(1,17) = 4.84, P = 0.042] and
‘nuts–musty’ [F(1,17) = 36.16, P < 0.001]. No significant
effects of ‘low’ versus ‘none’ were observed. Likewise, the
HOL3 × HYLHAL interaction could be attributed to the
interaction between ‘none’ versus ‘high’ (HOL) and
HYLHAL. Therefore, all main and interaction effects of

HOL3 were due to the influence of the highest 1-hexanol
concentration level.

Discussion
If only ‘apple’ ratings are taken into account, the CICs and
non-CIC investigated here show statistical additivity.
Adding HYL or HAL to the apple base mixture increases
apple ratings. Whether HYL and HAL produce sensory
hypo- or hyper-additivity cannot be concluded on the basis
of the present data, since this requires more information
on the form of the psychophysical functions of these two
substances (De Graaf and Frijters, 1988; Schifferstein,
1995). The presence of 1-hexanol suppresses ‘apple’ ratings
for all mixtures, reflecting a marked sensory interaction.
Correspondingly, 1-hexanol suppresses mixture ratings on
the ‘pear–apple’ attribute.

When the multivariate HOL × HAL interaction was
investigated further by studying single attribute effects, this
interaction could be attributed to trans-2-hexenal suppres-
sing the ‘nuts–musty’ intensity at high 1-hexanol levels. In
other words, the CIC trans-2-hexenal suppresses the contri-
bution of 1-hexanol to the ratings on its corresponding
attribute. This adds to the status of trans-2-hexenal as
‘character impact component’ since it suppresses part of the
effect of a non-character impact component on the mix-
ture’s aroma. Summarized, the observed interactions show
that sensory interactions among mixture components are
present and that these interactions pertain to ratings on a
number of attributes.

In experimental investigations of mixture aroma quality, a
single attribute describing the main character of the aroma
cannot sufficiently reflect contributions of  all components
to the aroma. Had, for instance, only ‘apple’ ratings been
used in this study, then the important trans-2-hexenal ×
1-hexanol interaction would have gone unnoticed. There-

Table 3 Repeated measures ANOVA of HOL × HYL × HAL

Attribute Source d.f. F P

Apple HOL 1, 17 18.67 <0.001**
Apple HYL 1, 17 7.16 0.016*
Apple HAL 1, 17 16.92 0.001**
Apple HOL × HAL 1, 17 0.03 0.865
Nuts–musty HOL 1, 17 34.21 <0.001**
Nuts–musty HYL 1, 17 15.81 0.001**
Nuts–musty HAL 1, 17 21.26 <0.001**
Nuts–musty HOL × HAL 1, 17 28.62 <0.001**
Pear–apple HOL 1, 17 9.38 0.007**
Pear–apple HYL 1, 17 10.61 0.005**
Pear–apple HAL 1, 17 1.05 0.319
Pear–apple HOL × HAL 1, 17 3.07 0.098
Bittersweet–rum HOL 1, 17 0.04 0.836
Bittersweet–rum HYL 1, 17 2.52 0.131
Bittersweet–rum HAL 1, 17 4.59 0.047*
Bittersweet–rum HOL × HAL 1, 17 1.94 0.182

Only the univariate results of the four attributes with significant effects
are shown. *P < 0.05; **P < 0.01.

Table 4 Repeated measures ANOVA of HOL3 × HYLHAL for the same
attributes as in Table 3

Attribute Source d.f. F P

Apple HOL3 2, 34 12.13 <0.001**
Apple HYLHAL 1, 17 19.22 <0.001**
Apple HOL3 × HYLHAL 1, 17 0.70 0.499
Nuts–musty HOL3 2, 34 32.34 <0.001**
Nuts–musty HYLHAL 1, 17 23.86 <0.001**
Nuts–musty HOL3 × HYLHAL 1, 17 17.17 <0.001**
Pear–apple HOL3 2, 34 6.05 0.006**
Pear–apple HYLHAL 1, 17 8.54 0.010**
Pear–apple HOL3 × HYLHAL 1, 17 1.52 0.234
Bittersweet–rum HOL3 1, 17 0.10 0.909
Bittersweet–rum HYLHAL 1, 17 4.12 0.058
Bittersweet–rum HOL3 × HYLHAL 1, 17 1.60 0.217

**P < 0.01.

492 J.H.F. Bult et al.



fore, we argue that the use of multiple attribute ratings
should be preferred to one-dimensional measures in food
aroma studies. However, a limited set of eight attributes is
rather small according to recommended 25–30 (Callegari et
al., 1997). Therefore, some concern is justified with respect
to the validity of the operationalization of aroma quality
in the present study. When using the common technique of
odour profiling as an operationalization of aroma quality,
one assumes a linear additive model for contributions of
each attribute to the overall aroma. Therefore, an observed
mutual suppression of components can not result from the
chosen operationalization technique. Hence, we attribute the
sensitivity for mixture interactions of  our characterization
method to the use of descriptors generated on the basis of
the constituent odours. This enabled the training of attribute
usage and allowed for direct measurement of mutual sup-
pression of odorants in the mixture. Although the oper-
ationalization used here may not allow full representation of
perceived aromas, it proved sufficient for the assessment of
mixture interactions.

To eliminate the effect of odour intensity, the intensities
of the two CICs and the non-CIC were matched before their
contribution to a multi-component model solution was
investigated. This involved raising the concentration of the
non-CIC component. Although this may have altered the
quality of the aroma, it was necessary to do so in order to be
able to attribute effects exclusively to the influence of odour
quality. Interestingly, the highest rating on the apple
attribute was given for the original apple model (Figure 2E),
in which the non-CIC was present in low concentration.

The two CICs and the non-CIC showed main effects on
their corresponding odour attributes. From this, it can be
concluded that these components did indeed influence the
perceived aromas. More specifically, when the three studied
components were added to the mixture, ratings for the three
respective character descriptors increased significantly. This
suggests that panellists were able to recognize the unique
contribution of each of the three manipulated components
to the mixture’s aroma. This is surprising given that Laing
and colleagues showed that humans have great difficulty
recognizing as few as three or four components in mixtures
containing up to five or six odorants (Laing and Francis,
1989; Laing and Glemarec, 1992; Livermore and Laing,
1996). This discrepancy in results is unlikely to be due to
differing similarities between the odorants used in each
study. Laing et al. employed dissimilar odorants, which
should have maximized the number of  correctly identified
components, whereas at least one odorant in the present
study was both structurally and perceptually similar to a
CIC (i.e. hexanal and trans-2-hexenal). Also, differing mix-
ture complexities cannot have caused this outcome since the
mixture in the present study is more complex, creating a
more difficult task.

An explanation for the seemingly enhanced performance
of subjects in the present experiment can be found in the

methodology employed. In the present study, the subjects
were aided by being provided with specific descriptors that
directed them in rating specific feature intensities. Subjects
were not requested to focus on physical components, as was
the case in the study by Laing et al. Furthermore, Laing et
al. gave their subjects dichotomous decision options: an
odorant is present in the mixture or it is not. Under this
regime a subject has a complex task: he or she has to assess
the intensity of component-specific contributions to the
mixture and has to decide on the relevance of the perceived
intensities to the question of whether components are
present or not. In contrast, the present study employed con-
tinuous attribute scales that enabled subjects to express the
intensity of sensations. No absolute decisions on presence
had to be made.
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